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C O N V E R G E N C E  O F  T H E  S P E C T R A L  V I S C O S I T Y  M E T H O D  F O R  

N O N L I N E A R  C O N S E R V A T I O N  L A W S  

Eitan Tadmor 

School of Mathematical Sciences, Tel-Aviv University, and 

Insti tute for Computer Applications in Science and Engineering 

1. I N T R O D U C T I O N .  In recent years, spectral methods have become one of the standard tools 

for the approximate solution of nonlinear conservation laws, e.g., [3]. It is well known that  the 

spectral methods enjoy high order of accuracy whenever the underlying solution is smooth. On the 

other hand, one of the main disadvantages of using spectral methods for nonlinear conservation 

laws, lies in the formation of Gibbs phenomena, once spontaneous shock discontinuities appear in 

the solution; the global nature of spectral methods then pollutes the unstable Gibbs oscillations 

overall the computational domain and prevent the convergence of spectral approximation in these 

cases. One of the standard techniques to mask the oscillatory behavior of spectral approximations 

is based on spectrally accurate post-processing of these approximations. Indeed, the convergence 

of such recovery techniques can be justified by linear arguments [1], [5]. However, for nonlinear 

problems we show by a series of prototype counterexamples, that  spectral solutions with or with- 

out such post-processing techniques, do not converge to the correct 'physically'  entropy solutions 

of the conservation laws. The main reason for this failure of convergence of spectral methods is 

explained by their lack of entropy dissipation. 

A similar situation which involves unstable oscillations, is encountered with finite-difference 

approximations to nonlinear conservation laws. Here, the problem of oscillations is usually solved 

by the so called vanishing viscosity method. Namely, one adds artificial viscosity, such that  on 

the one hand it retains the formal accuracy of the basic scheme, while on the other hand, it 

is sufficient to stabilize the Gibbs oscillations. The Spectral Viscosity Method (SVM) proposed 

in [6] at tempts,  in an analogous way, to stabilize the Gibbs oscillations and consequently to 

guarantee the convergence of spectral approximations, by augmenting them with proper viscous 

modifications. 

2. T H E  S P E C T R A L  V I S C O S I T Y  M E T H O D .  We consider one-dimensional system of 

conservation laws 
oqu + i ) ( f C u ) )  _ O, (2.1) 
at Ox 

with prescribed initial data uo(x). We restrict our attention to the periodic initial-value problem 

(2.1) which avoids the separate question of boundary treatment.  To solve this 2r-periodic problem 

by spectral methods, we use an N-trigonometric polynomial 

N 
= 

k = - N  

in order to approximate the spectral or pseudospectral Fourier projection PNU of the exact solu- 

tion. Starting with uN(x, O) = PNuo(x), the classical Fourier method lets uN(x, t) evolves at later 
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time according to the approximate model 

OUN 0 
a- -7  + [P,C.,"(,,N(:~,0))] = o. (2.2) 

We have already noted that the convergence to the entropy solution of (2.1), UNN___~U m a y  (and 

in fact, in some cases must) fail. Instead, we propose to replace (2.2) by appending to it a 

spectrally accurate vanishing viscosity modification which amounts to 

Ot + [PNf(uN(x,t))] = ~ OUN] - -  ~ q m ( x , t ) ,  a= j 

Here, Q,~(x, t) is a viscosity kernel of the form 

q,,(x,t)= S, O,~(t) e'~. (2.4) 
,~_<lkl<N 

This kind of spectral viscosity can be efficiently implemented in the Fourier rather than in the 

physical space, i.e., 

o[ 
s-~x q,~(x,t) * Ox J =-- -¢ ~ k20~(t)Cz~(t)ei~*" (2.5) 

m<lkl<N 

It depends on two free parameters: the viscosity amplitude, e = ¢(N), and the effective size of 

the inviscid spectrum, m = re(N). In [6] it was shown that these two parameters can be chosen 

so that we have both, i.e., the spectral viscosity retains the spectral accuracy of the overall 

approximation as re(N) T co, and at the same time, it is sufficient to enforce the correct amount 

of entropy dissipation that is missing otherwise (with ¢ = 0). 

Entropy dissipation is necessary for convergence; the lack of such dissipation in the classical 

Fourier methods is the main reason for its divergence. On the other hand, under appropriate as- 

sumptions, one can use compensated compactness arguments [8] to show that entropy dissipation 

induced by the SV method is sufficient for convergence. 

3. C O N V E R G E N C E .  We shall discuss two model problems. 

Example 3.1 The scalar case. We consider general nonlinear scalar conservation laws (2.1). 

The pseudospectral viscosity method collocated at the equidistant points x~ 2~ = -~--, takes the form 

0 
~---~[PN f (UN(X., t) )] = ---~ -~UN(Xv, t) + 1 ~ (~___~N'.kZ~tk(t)e,,=." (4.1) 

Ikl=~ 

It can be shown, [7], that the spectral viscosity on the right guarantees entropy dissipation and 

the L°°-stability of the overall approximation; consequently convergence follows. 

Example 3.2 The isenotropic gas dynamics equations 

m + (pu)= = o 
(4.2) 

(pu), + (pu' +,(p))= = 0 

for a polytropic gas p = Const.p% ~/< 1 are approximated in a similar fashion. Under appropriate 

L°°-stability assumption (in particular, a uniform bound from the vacuum state), it can be shown 

[3], [7] that the spectral viscosity solution converges. 
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The Fourier method with spectral va~ulshing viscosity ... and without spectral viscosity. 
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The Fourier method with smooth spectral vanishing viscosity. 
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